设为首页
收藏本站
开启辅助访问
登录
立即注册
只需一步,快速开始
会员
首页
BBS
文章
Portal
教程
最新
供电设计
联系我
直达
搜索
搜索
图文教程
磁力开关
馈电开关
采煤机
华宁集控
高爆开关
掘进机
视频教程
初入煤电
组合开关
移变低馈
资料下载
书籍
标规
资料
说明书
社区分类
煤电入门
煤电维修
维修电工
电气软件
电子技术
工控自动
本版
文章
帖子
百技网
»
首页
›
工控自动
›
变频器
›
变频器的冷却方式比较
返回列表
发新帖
变频器的冷却方式比较
[复制链接]
2268
|
0
|
2011-9-17 15:53:53
|
显示全部楼层
|
阅读模式
<
高压变频调速系统虽然是一种非常高效的调速装置,但是在运行中,仍然有2%-4%左右的损耗,这些损耗都变成热量,最终耗散在大气中。如何把这些热量顺利的从
变频器
中带出来,是变频器设计中一个非常重要的问题。
高压变频器的发热部件主要是两部分:一是整流变压器,二是功率元件。功率元件的散热方式是关键。现代变频器一般采用空气冷却或者水冷。在功率较小时,采用空气冷却就能够满足要求。在功率较大时,则需要在散热器中通水,利用水流带走热量,因为散热器一般都有不同的电位,所以必须采用绝缘强度较好的水,一般采用纯净水,它比普通蒸馏水的离子含量还要低。在水路的循环系统中,一般还要加离子树脂交换器,因为散热器上的金属离子会不断的溶解到水中,这些离子需要被吸附清除。
应该说,从散热的角度来说,水冷是非常理想的。但是,水循环系统工艺要求高,安装复杂,维护工作量大,而且一旦漏水,会带来安全隐患。所以,能够用空气冷却解决问题的场合,就不要采用水冷。
空气冷却能够解决的散热功率,毕竟有一个极限,这个极限与技术类别有关。比如,ABB公司的ACS1000系列三电平变频器,规定在2000KW以上就必须采用水冷,而美国的罗宾康公司和AB公司,对于3200KW/6KV的变频器,仍然采用空气冷却。这又是为什么呢?
原来,空气冷却能够从设备中带出来的热量,与有效散热面积的大小有关系,散热面积越大,能够带走的热量就越多。元器件的数目越多,散热的面积就越大,空气冷却的效果就越好。对于6KV的变频器,比3KV的变频器器件数目多,而且单只器件的电流小,所以可以有较大的散热面积,相当于热量均分了。
有人会说,我增大散热器的面积,不就增大了散热面积了吗?我公司产品开发部的试验证明了这是一个悖论。电力电子元件的热量按照如下方式传导:沿散热器表面散开,再沿表面传递到散热片上,被空气带走。沿散热器表面散开的面积是非常有限的,离开元件较远处,已经基本感受不到热量,所以把散热器表面做大到一定程度,对散热效果的增加已经没有意义。对于散热器的齿片也是一样,齿根处温度较高,齿尖处只有很少的热量到达,所以增高齿片到一定程度,对散热也毫无用处。
所以,要解决大功率产品的空气冷却问题,唯一有效的办法是,利用很多的元器件,均摊热量,增大有效的散热面积。
当然,采用功耗较小的新一代元器件,或者采用热阻较小的新式散热器,也可以使空气冷却的变频器功率更大,例如,在目前的IGBT封装形式下,原来我们发现,如果不采用器件并联,我们只能做到1800KW/6KV,现在,由于新一代IGBT器件和新式散热器的采用,我们可以做到2300KW/6KV。这是技术研究的另一方面,与上面的分析不矛盾。
那么,为什么我们在2500KW/6KV以上的变频器中采用IGBT并联?并不是因为我们买不到那么大电流的IGBT,而是因为,通过试验我们发现,在现有的技术条件下,如果不采用元器件并联增大有效散热面积,无法将内部的热量用空气带出来,无法保证元器件的温升满足要求。
我们现在研究开发5000KW/6KV的变频器,为什么我们比较有把握?因为原来我们开发的3200KW/6KV变频器,是用15个功率单元带走热量,到了5000KW时,我们把功率单元增加到24个,每个功率单元带走的热量仍旧差不多。
有人又会问:为什么ABB公司不采用元器件并联呢?这是因为,在所有的器件中,只有IGBT和MOSFET是正温度系数,适于并联,IGCT是不适于并联的,所以他们必须采用水冷了。
关于变频器散热的另外一个问题是,把热量从变频器内部带出来以后,如何耗散在大气中。对于水冷装置,需要在室外安装一个水-空冷装置,把热水变成凉水。对于空气冷却的装置,如果散热量较大,需要安装风道,把热空气直接排出室外,否则,热空气会在室内聚集,造成室温升高。以前有的用户考虑用室内空调机降温,事实证明在大功率变频器应用中,需要较大的空调配置,是不经济的。如果用户工厂内有冷却水,我们建议用户采用水-空冷装置,这种装置类似于我们工厂的空调装置,在水管上镶嵌散热片,在水管内通入冷水,冷水的流量要足够大,保证散热片较低的温度,变频器散出来的热风进入散热片,经过散热片后变成了凉风。这种方式可以采用密闭的小屋放置变频器,不用考虑灰尘的影响。
总之,变频器的散热问题有很多的学问,结构设计人员在试验中,发现了很多非常有意思的现象。而变频器的结构设计,往往不是把东西装进去那么简单,需要考虑很多的问题。
变频器
,
功率
热帖推荐
PLC学习1
供电所管理流程
电气标准规范汇编1
电容降压原理
供电所工作总结(范文)
变频器的冷却方式比较
法那克FANUC维修技巧(参数)
两台电动机既可分别启动和停止,也可以同时启动和停止
高压断路器有什么作用
单相双值电容异步电动机接倒顺开关
阻燃电缆和耐火电缆的结构、特性及如何选用
浅谈电力电缆型号性能介绍
相关帖子
•
10、变频器减速时间设置
•
1140V功率与电流的估算关系
•
知道电机功率如何计算电流和选电线
•
变频器设置方法
•
【淮南万泰】变频器培训资料
•
恒洋三电平变频器电路图
•
三相电机的功率是如何配线的?
•
求中信重工开诚智能变频器中BPJ2-500/1140(A)变频器的说明书
•
唐山开诚变频器用户手册(彩屏V1.0)
•
ABB变频器ACS800说明书新[1].pdf【下载】
回复
举报
返回列表
发新帖
高级模式
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
登录
|
立即注册
本版积分规则
发表回复
回帖后跳转到最后一页
shandong
回复楼主
返回列表
PLC技术
变频器
人机界面
图文推荐
如何升级VIP用户组
2018-01-13
软启动器的工作过程
2018-12-26
天津华宁KTC101主控器的内部结构
2021-05-14
煤矿电工教程:10、风机开关过流、短路、断相保护工作原理
2022-03-12
矿用防爆软启开关教程——13、软启开关近控启动过程
2020-02-15
热门排行
1
KJZ1-200(400)馈电开关原理分析
2
这个电气元件符号你认识吗?
3
煤矿电工教程:10、风机开关过流、短路、断相保护工作原理
4
馈电开关漏电闭锁故障维修_成伟维修笔记1
5
馈电开关漏电闭锁故障的维修_成伟维修笔记7
6
馈电开关漏电试验不跳闸故障维修_成伟维修笔记4
7
煤矿风机开关教程:11、过、欠压保护相关参数的设置
8
煤矿高压防爆开关漏电保护的研究
9
天津华宁KTC101主控器的内部结构
10
高防开关短路跳闸故障的维修_成伟维修笔记8