高压电容器引起的过电压及其对策(续)

[复制链接]
查看1100 | 回复1 | 2011-9-7 22:09:37 | 显示全部楼层 |阅读模式
<





摘要: 对内熔丝电容器中,因内熔线动作引起的作用在完好元件上的过电压进行了定性、定量分析。进行了试验验证。提出了解决办法。

关键词:内熔丝 内熔丝电容器 元件 直流分量 过电压 放电电阻?
  加上熔丝动作后故障串联段所分担的交流电压的升高,实际所受到的电压峰值可能会更高些。?
  通过以上分析可知,在高压内熔丝电容器中的内熔丝动作之后,在其各个串联段上会出现直流电压分量。在高压内熔丝电容器中内熔丝动作之后之所以会在各串联段上出现过电压,就是由这些直流电压分量与交流电压分量叠加引起的。?
  对于内部电气联结如图1所示的高压内熔丝电容器,不难看出存在于各个串联段上的直流电压分量,只有通过其本身的绝缘电阻慢慢下降。在故障串联段上的直流电压分量与时间的关系为:
sCsln(U0/UR) (11)?
s、Cs—分别为故障串联段的极间绝缘电阻和电容;?
R—熔丝动作后,经时间t,在故障串联段上剩余的直流电压分量?
s、Cs是一个与电容器极间材料的介电性能有关的常数,通常可用τ来表示,即:?
s.Cs=τ (12)?
4ln10s≈32 h (13)?

3.1 在高压内熔丝电容器的每一个串联段上并接一个内放电电阻,如图5所示,这样,由内熔丝动作产生的分布在各个串联段上的“陷阱电荷”就有了一个释放通道,在故障串联段上的直流电压分量与时间的关系变为:
sCsln(U0/UR)(14)?
0/UR=10;t=300s,则我们可得到:?
s=300/(2.3Cs)(15)?
—200—1W全膜介质内熔丝电容器,其每个串联段的电容Cs=63μF将Cs代入式(15)可得:



3.2 在设计内熔丝的时候,在保证电容器发生短路放电时不会熔断,并留有一定裕度的前提下,尽可能不要选用直径太粗的内熔丝,因为内熔丝的直径越粗其动作时所消耗的能量越大,故障串联段上失去的电荷△Q0就越大,由其产生的直流电压分量U0也就越大。另外,在结构允许的条件下应尽量使每个串联段上的并联元件数m多一些。这样,对于相同的△Q0在故障串联段上产生的直流电压分量可以低一些(见式(4))。从这一点出发,对于大容量的集合式电容器,以采用内部带放电电阻的、内部元件全部并联的带内熔丝的小台单元电容器,并由多台这样的单元电容器进行先并后串的结构为好。?

1、C2构成了一台内部有4个串联段的高压并联电容器的等值电路,C2为其中一个串联段的等值电路,其中f模拟内部熔丝,K模拟与内熔丝串联的击穿元件,当故障元件击穿,K合上,在电容C2上储存的能量向f放电,将f熔断,在C2上的电压波形如图8、图9所示。图8是在负半波时熔丝动作,所形成的直流电压为正值,U0=3(小格)而Um=8(小格),所以熔丝动作后,正半周电压幅值U′m=3 8=11(小格)。U′m/Um=11/8=1.38。图9是在正半周时熔丝动作,所以U0为负值,电压波形下移,U0=-4(小格),所以在负半周的电压幅值为UU′m=8 4=12(小格),U′m/Um=1.5。


s=1kV的情况下得到的波形图。由于所施加的电压较低,在C2上所储存的能量仅为Us=3kV时的1/9。在真空开关合上后,在C2上所储存的能量不足以使熔丝f熔断,此后在交流电流的作用下,经若干个周波后熔丝熔断。这时,由于在电容C2上的电荷已完全放净,所以U0=Um,U′m≈2Um。图10是在交流电压负峰值时由工频电流将熔丝熔断。图11是在交流电压过负峰值前由工频电流将熔线熔断。





高压内熔丝电容器的各串联段上有可能会存在“陷阱电荷”,在打开电容器检修时,应对电容器中的每个串联段进行短路放电,以免检修人员遭受电击。?
在高压并联电容器中的每个串联段上并联放电电阻可有效释放由内熔丝动作在各串联段上产生的“陷阱电荷”,降低与其相应的直流电压分量,从而大大减轻由内熔丝动作所引起的直流加交流过电压对高压电容器的危害。?

热帖推荐
pmr68 | 2013-7-22 14:26:09 | 显示全部楼层
学习学习{:soso_e163:}
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则