人工智能在电气传动中运用的进展

[复制链接]
查看1878 | 回复0 | 2011-9-7 22:08:12 | 显示全部楼层 |阅读模式
<




 

摘要:本文论述了人工智能在电气传动领域的发展概况。其中主要包括模糊控制、神经网络和遗传算法的应用特点及发展趋势等

关键词:神经网络控制 模糊神经元控制 自适应控制
一、引 言
 人工智能控制技术一直没能取代古典控制方法。但随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术(人工神经网络、模糊控制、模糊神经网络、遗传算法等)所替代。这些方法的共同特点是:都需要不同数量和类型的必须的描述系统和特性的“a priori”知识。由于这些方法具有很多优势,因此工业界强烈希望开发、生产使用这些方法的系统,但又希望该系统实现简单、性能优异。
   由于控制简单,直流传动在过去得到了广泛的使用。但由于它们众所周知的限制以及DSP技术的进步,直流传动正逐渐被高性能的交流传动所取代。但最近,许多厂商也推出了一些改进的直流驱动产品,但都没有使用人工智能技术。具信使用人工智能的直流传动技术能得到进一步的提高。
  高性能的交流传动瞬态转矩的控制性能类似于他励直流电机的控制性能。现有两种高性能交流传动的控制方法:矢量控制(VC)和直接转矩控制(DTC)。矢量控制是德国的研究人员在二十多年前提出的,现在已经比较成熟,并已广泛应用,很多生产厂商都推出了他们的矢量控制交流传动产品,最近又大量推出了无速度传感器的矢量控制产品。尽管在高性能驱动产品中使用AI技术会极大地提高产品的性能,可是到目前为止只有两个厂家在他们的产品中使用了人工智能(AI)控制器;直接转矩控制是大约在十五年前由德国和日本的研究人员提出的,在过去十年中得到大量的研究,现在ABB公司已向市场推出了直接转矩控制的传动产品,使得人们对直接转矩控制的研究兴趣增加,将来在直接转矩控制中将会用到人工智能技术,并将完全地不需要常规的电机数学模型了。
 英国CT公司(Control Technique PLC)推出了世界上第一台统一变频器(Unidrive),其他一些公司也推出了相应的产品,现在这些产品都没有使用人工智能技术,“统一”的概念完全依靠软件实现,这就为软计算技术的实现提供了条件。具信在将来统一变频器将使用直接转矩控制以及各种形式的矢量控制,单一使用直接转矩控制技术的产品将遭到淘汰。本文也将讨论人工智能在统一变频器中运用的一些方面,同时也包括AI控制器在VC和DTC中的运用。
AI控制器能否工业运用的关键一点是:实现这些控制器的硬件和软件。大多数DSP控制的驱动器都有足够的计算能力实现人工智能的算法,并且都能得到大多数人工智能控制器软计算所需要的信号。通过运用适当的控制策略,就能大大地减少计算和硬件的负担,从而把注意力集中于提高驱动器的性能、鲁棒性和可靠性上面。
  在将来,智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用。但是,还有很多研究工作要做,现在还只有少数实际应用的例子(学术研究组实现少,工业运用的就更少了),大多数研究只给出了理论或仿真结果,因此,常规控制器在将来仍要使用相当长一段时间。

二、人工智能控制器的优势

  文献中,不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似器。这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。这些AI函数近似器比常规的函数估计器具有更多的优势,这些优势如下:
(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)
(2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。例如:模糊逻辑控制器的上升时间比最优PID控制器快1
热帖推荐
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则