电力系统负荷预测方法及特点

[复制链接]
查看1365 | 回复1 | 2011-9-7 22:00:02 | 显示全部楼层 |阅读模式
<




摘要:负荷预测在电力系统规划和运行方面发挥的重要作用,具有明显的经济效益,负荷预测实质上是对电力市场需求的预测。该文系统地介绍和分析了各种负荷预测的方法及特点,并指出做好负荷预测已成为实现电力系统管理现代化的重要手段。


2.8 专家系统法
  专家系统预测法是对数据库里存放的过去几年甚至几十年的,每小时的负荷和天气数据进行分析,从而汇集有经验的负荷预测人员的知识,提取有关规则,按照一定的规则进行负荷预测。实践证明,精确的负荷预测不仅需要高新技术的支撑,同时也需要融合人类自身的经验和智慧。因此,就会需要专家系统这样的技术。专家系统法,是对人类的不可量化的经验进行转化的一种较好的方法。但专家系统分析本身就是一个耗时的过程,并且某些复杂的因素(如天气因素),即使知道其对负荷的影响,但要准确定量地确定他们对负荷地区的影响也是很难的。专家系统预测法适用于中、长期负荷预测。此法的优点是:①能汇集多个专家的知识和经验,最大限度地利用专家的能力;②占有的资料、信息多,考虑的因素也比较全面,有利于得出较为正确的结论。缺点是:①不具有自学习能力,受数据库里存放的知识总量的限制;②对突发性事件和不断变化的条件适应性差。
2.9 神经网络法
  神经网络(ANN,Artificial Neural Network)预测技术,可以模仿人脑做智能化处理,对大量非结构性、非确定性规律具有自适应功能。ANN应用于短期负荷预测比应用于中长期负荷预测更为适宜。因为,短期负荷变化可以认为是一个平稳随机过程。而长期负荷预测可能会因政治、经济等大的转折导致其模型的数学基础的破坏。优点是:①可以模仿人脑的智能化处理;②对大量非结构性、非精确性规律具有自适应功能;③具有信息记忆、自主学习、知识推理和优化计算的特点。缺点是:①初始值的确定无法利用已有的系统信息,易陷于局部极小的状态;②神经网络的学习过程通常较慢,对突发事件的适应性差。
2.10 优选组合预测法
  优选组合有两层含义:一是从几种预测方法得到的结果中选取适当的权重加权平均;二是指在几种预测方法中进行比较,选择拟和度最佳或标准偏差最小的预测模型进行预测。对于组合预测方法也必需注意到,组合预测是在单个预测模型不能完全正确地描述预测量的变化规律时发挥作用。一个能够完全反映实际发展规律的模型进行预测完全可能比用组合预测方法预测效果好。该方法的优点是:优选组合了多种单一预测模型的信息,考虑的影响信息也比较全面,因而能够有效地改善预测效果。缺点是:①权重的确定比较困难;②不可能将所有在未来起作用的因素全包含在模型中,在一定程度上限制了预测精度的提高。
2.11 小波分析预测技术
  小波分析是一种时域-频域分析法,它在时域和频域上同时具有良好的局部化性质,并且能根据信号频率高低自动调节采样的疏密,它容易捕捉和分析微弱信号以及信号、图像的任意细小部分。其优点是:能对不同的频率成分采用逐渐精细的采样步长,从而可以聚集到信号的任意细节,尤其是对奇异信号很敏感,能很好的处理微弱或突变的信号,其目标是将一个信号的信息转化成小波系数,从而能够方便地加以处理、储存、传递、分析或被用于重建原始信号。这些优点决定了小波分析可以有效地应用于负荷预测问题的研究。
3 结束语
  负荷预测是电力系统调度、实时控制、运行计划和发展规划的前提,是一个电网调度部门和规划部门所必须具有的基本信息。提高负荷预测技术水平,有利于计划用电管理,有利于合理安排电网运行方式和机组检修计划,有利于节煤、节油和降低发电成本,有利于制定合理的电源建设规划,有利于提高电力系统的经济效益和社会效益。因此,负荷预测已成为实现电力系统管理现代化的重要内容。


热帖推荐
yhm321 | 2013-8-22 21:05:14 | 显示全部楼层
{:soso_e183:}
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则