灰色模型在电量预测中的应用

[复制链接]
查看1440 | 回复1 | 2011-9-5 21:16:54 | 显示全部楼层 |阅读模式
<




 

摘要:负荷预测是供电部门的重要工作之一,准确的负荷预测可以经济合理地安排电网内部发电机组的启停,制订设备检修计划,编制电网建设规划,保证社会正常的生产、生活用电,提高经济效益和社会效益。

关键词:灰色模型 负荷预测 电量预测
  负荷预测是供电部门的重要工作之一,准确的负荷预测可以经济合理地安排电网内部发电机组的启停,制订设备检修计划,编制电网建设规划,保证社会正常的生产、生活用电,提高经济效益和社会效益。
  电力系统负荷预测包括最大负荷功率、负荷电量及负荷曲线的预测。最大负荷电量预测对于确定电力系统发电设备及输变电设备的容量是非常重要的,对选择适当的机组类型和合理的电源结构以及确定燃料计划有重要的作用。
  目前,国内外关于负荷预测的理论及方法非常多,大致分为经典预测方法和现代预测方法。经典预测方法包括:指数平滑法、趋势外推法、时间序列法和回归分析法,现代负荷预测方法包括:灰色数学理论、专家系统方法、神经网络理论、模糊负荷预测。
  本文用灰色理论法对长治供电分公司2005年度最大需电量进行了预测,并对其适用性进行了一般分析。
  1 灰色模型的实际应用
  1.1 灰色理论概述
  在灰色系统理论的研究中,将各类系统分为白色、黑色、和灰色系统。"白"指信息完全已知;"黑"指信息完全未知;"灰"指信息部分已知、部分未知,或者说信息不完全,这是"灰"的基本含义。区别白色系统和灰色系统的重要标志是系统中各因素之间是否具有确定的关系,如:映射关系,函数关系等。因素之间具有确定映射关系的系统是白色系统。因此,白色系统要求有明确的作用原理,即有确定的结构或有物理原型。然而许多社会经济系统都没有物理原型,虽然知道影响系统的某些因素,但很难明确全部因素,更不可能确定因素之间的映射关系。这种没有确定的映射关系(函数关系)的系统是灰色系统。
  所谓灰色系统理论,就是研究灰色系统的有关建模、控模、预测、决策、优化等问题的理论。
  灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
  1.2 累加生成
  如果对一原始数列作如下处理:原始数列中的第一个数据维持不变,作为新数列的第一个数据,新数列的第二个数据是原始的第一个与第二个数据相加,新数列的第一个、第二个与第三个相加,…,依此类推。这样得到的新数列,称为累加生成数列,这种处理方式称为累加生成。
  记为原始数列,

  记生成数列为,

  如果和之间满足以下关系,则称{X (1)}为{X (0)}的一次累加生成数列。
  可归纳出r次累加生成有以下关系,
  

  从 (r - 1) 次到r次的累加为:
  

  累加生成能使任意非负数列、摆动的非摆动的,转化为非减的、递减的数列。换言之,通过累加生成得到的生成数列,其随机性弱化了,规律性增强了。
  1.3 累减生成
  将原始数据中前后相邻的两个数据相减,这种生成称为累减生成。所得的数据为累减生成值。累减生成使累加生成的逆运算。
  令{X(r)}为r次生成数列,对{X(r)}作i次累减,定义为α(i),则有如下基本关系式:

  
  1.4 灰色GM(1, 1)模型的建立
  GM(1, 1)模型是最常用的一种灰色模型,它是由一个只包含单变量的一阶微分方程构成的模型,是GM(1, n)模型的特例。
  设有变量为X(0)的原始数据序列
, X (0)(n)]生成一阶累加生成序列,由于序列具有指数增长规律,而一阶微分方程的解也是指数增长形式,因此,我们认为X


热帖推荐
pmr68 | 2013-6-24 09:39:17 | 显示全部楼层
学习学习{:soso_e189:}
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则